Mechanisms of Fatigue in Health and Disease

NIH Blueprint for Neuroscience

Fatigue Prominent in Many Disorders

Central Nervous System

Multiple Sclerosis

Post Stroke

Post TBI

Post Polio Syndrome

Post posterior fossa surgery/path

Aging

Neuroendocrine

Hypothyroidism

Hypothalamic Pituitary Adrenal Axis

Drug AEs

Metabolic

Renal failure

Heart Failure

Anemia

Muscle Nerve

Overtraining Syndrome

Myasthenia Gravis

Mitochondrial disorders

Chronic Guillain Barre/

Inflammatory/Rheumatic **Diseases**

Environmental

Heat

Altitude sickness

Mononucleosis

Lyme Influenza

Cancer

Cancer and Post cancer Radiation and Chemotherapy

Psychological

Infectious and Post Infectious

Depression

Post traumatic stress disorder Anxiety Disorder

Definition of Fatigue

- <u>Fatigue</u>: Difficulty in sustaining voluntary mental and physical activities.
 - "To continue or stop?"

- Simplistic Fatigue model: "Work" output is a function of :
 - A) motivational input (<u>reward</u>) subject of intense study
 - B) feedback from motor, sensory, autonomic and cognitive systems that establishes the <u>level of perceived exertion</u>. the biological basis of "exertion" for cognitive tasks, and how relevant feedback from the body is processed in the CNS is poorly understood.
 - C) <u>sense</u> of fatigue occurs when value of B>>A
 - poorly understood how and where that calculation happens.
- <u>Persistent Illness-related Fatigue</u>: the subjective sense of persistent "tiredness" or "loss of energy" that interferes with the performance of daily life activities and is not relieved by rest.

Neuroeconomics: A potential means to understand neural mechanisms of fatigue.

Nature **431**, 760-767 (14 October 2004) Computational roles for dopamine in behavioural control P. Read Montague^{1,2}, Steven E. Hyman³ & Jonathan D. Cohen^{4,5}

Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward

Kenneth T. Kishida^{a,1}, Ignacio Saez^{a,2}, Terry Lohrenz^a, Mark R. Witcher^b, Adrian W. Laxton^b, Stephen B. Tatter^b, Jason P. White^a, Thomas L. Ellis^{b,3}, Paul E. M. Phillips^{c,d}, and P. Read Montague^{a,e,f,1}

Dopamine release in human brain translates computations about actual and simulated experiences to embodied states of feeling

During muscular fatigue the force generation is submaximal: implicating a central controller

LOSCHER WN, CRESSWELL AG, AND THORSTENSSON A. Recurrent inhibition of soleus alphamotoneurons during a sustained submaximal plantar flexion.

Α

Electroencephalogr

Clin Neurophysio

101: 334– 338, 1996

Two major categories of fatigue.

<u>Physical fatigue</u> is an exerciseinduced reduction in maximal voluntary muscle force.

- the central nervous system fails to drive the motoneurons maximally. Due to inhibitory process upstream of motor cortex.
- How the brain interprets signals from muscle to produce sense of fatigue is not clear.
- Mental fatigue is associated with affective, behavioral, and cognitive impairments especially in attention, planning, increased distractability.

Figure 5: General sites of pathology in central fatigue RAS=reticular activating system.

Figure 1 (Westbrook & Braver). Subjective value of a cash offer, or conversely, motivation to engage with a task, decreases with increasing working memory load for both young adults (YA) and older adults (OA).

Animal Models of Fatigue

Neurobiological studies of fatigue

Mary E. Harrington

Progress in Neurobiology, Volume 99, Issue 2, 2012, 93-105

Physical fatigue

forced swim, exercise, heat exposure, sleep deprivation

Immunologically induced

Synthetic analog of dsRNA systemically

Parasitic infections

Brucella Ag

LPS

IL1Beta

Aging

Fig. 1. Suppression of spontaneous wheel-running activity following poly I:C. Male Wistar rats were administered poly I:C (P; 3 mg/kg) or saline (S) and killed on day 1 or day 8 following injection. Total daily wheel-running activity was expressed as a percent...

Arousal system in rat

New Circuit Technologies

"Advanced imaging methods now allow celltype-specific recording of neural activity across the mammalian brain, potentially enabling the exploration of how brain-wide dynamical patterns give rise to complex behavioural states"

Deep posteromedial cortical rhythm underlying dissociation. Vesuna, Kauvar, Richman,

Gore,Oskotsky, Sava-Segal, Luo, Malenka, Henderson, Nuyujukian,Parvizi & Karl Deisseroth

•Nature 2020 Oct;586(7827):87-94. doi: 10.1038

- Ketamine found to induce 1-3Hz rhythm in layer
 5 retrosplenial neurons
- Optogenetic activation of these cells recapitulated dissociative behavior
- Recordings in an epilepsy pt show same localized rhythm as part of a dissociative experience as part of aura.

Capturing and Manipulating Activated Neuronal Ensembles with CANE Delineates a Hypothalamic Social-Fear Circuit

Katsuyasu Sakurai,¹ Shengli Zhao,¹ Jun Takatoh,¹ Erica Rodriguez,¹ Jinghao Lu,¹ Andrew D. Leavitt,² Min Fu,¹ Bao-Xia Han,¹ and Fan Wang¹.³.*

¹Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA ²Department of Laboratory Medicine, UCSF, San Francisco, CA 94143, USA

3Lead Contact

*Correspondence: fan.wang@duke.edu http://dx.doi.org/10.1016/j.neuron.2016.10.015

● Fos Y dsTVA ← CANE-LV-Gene

Fos expressing neurons

ne X PEnvA-VSVG (mutated envelope)

expressing activated neurons

Gene X
(X=Cre, GFP, RFP etc)

Labeling of active neural circuits in vivo with designed calcium integrators

Benjamin F. Fosque,*† Yi Sun,* Hod Dana,* Chao-Tsung Yang, Tomoko Ohyama, Michael R. Tadross, Ronak Patel, Marta Zlatic, Douglas S. Kim, Misha B. Ahrens, Vivek Jayaraman, Loren L. Looger, Eric R. Schreiter:

13 FEBRUARY 2015 • VOL 347 ISSUE 6223

temporally precise "activity snapshot" of a large tissue volume.

Blueprint Interoception Program- Representation and Regulation of the Internal World

Why we feel the way we do.

It is about the representation of the internal, not the external world.

Interoception - Representation and Regulation of the Internal World

Numerous brain-peripheral organ axis remain to be identified and characterized at molecular and functional levels.

NIH Common Fund Program: Stimulating Peripheral Activity to Relieve Conditions (SPARC)

SPARC Primarily Focuses on Local Neural Circuits around Peripheral Organs

- <u>Technologies to Understand the Control of Organ Function by the Peripheral Nervous System (OT2) RFA-RM-17-010</u>
- Foundational Peripheral Neuroanatomy and Functional Neurobiology in Under-Studied Organs (U01) RFA-RM-17-003
- Comprehensive Functional Mapping of Neuroanatomy and Neurobiology of Organs (OT2) RFA-RM-15-018
- Pre-clinical Development of Existing Market-approved <u>Devices to Support New Market Indications (U18)</u> <u>RFA- RM-16-009</u>

Long term COVID-19 effects on the nervous system

- The perception of "Fatigue" is the most common:
 - 57% of <u>hospitalized</u> patients in Italian & 39% in British study (12 wks),
 97% of the 35% with persistent symptoms in CDC outpt study (2-3 wks)
- Headache in 61% of the symptomatic persons in CDC study of outpatients (2-3 weeks post + test), 2% in British study 12 wks post admission
- Insomnia in 26% in British post hospital study
- Loss of smell and taste
- Pain syndromes- chest, abdomen, muscles in CDC and British studies.
- Difficulty with concentration, labeled in media "brain fog" is exceedingly common and usually associated with fatigue.

Not reported in this study, but others report significant **Anxiety Disorders (PTSD) & Depression.**

In contrast 90% of outpatients with influenza recover within 2 weeks of + test.

CDC study of symptom-duration in outpatients

* 294 patients responded to 14–21-day interview, did not report a previous positive SARS-CoV-2 test before the reference test, and answered questions about symptoms; 276 (94%) of these reported one or more symptoms at the time of SARS-CoV-2 RT-PCR testing; those who were interviewed at 7 days were excluded, with 274 included here. † Patients were randomly sampled from 14 academic health care systems in 13 states.

RECOVER Initiative: Researching Covid to Enhance Recovery

Setting the Strategic Direction for RECOVER

Goal

Rapidly improve our understanding of and ability to predict, treat and prevent PASC

Key Scientific Aims

- Understand clinical spectrum/biology underlying recovery over time
- Define risk factors, incidence/prevalence, and distinct sub-phenotypes of PASC
- 3 Study pathogenesis over time and possible relation to other organ dysfunction/disorders
- 4 Identify interventions to treat and prevent PASC

Guiding Principles

Patient-centered.

participants as partners

engagement

nity

Multi-disciplinary, trans-NIH collaborative teams and network

Adaptive approaches based on emerging science

RECOVER, a research initiative from the National Institutes of Health (NIH), seeks to understand, prevent, and treat Post Acute Sequelae of COVID-19 infection, including Long COVID.

RECOVER Meta-Cohort: A Comprehensive and Complementary Approach

ACUTE INFECTION RECOVERY COHORT

POST-ACUTE INFECTION CASE-CONTROL COHORT

Anticipated Study Sizes		
Acute & Post-Acute Infection Cohorts	EHR/Health Sys. records	Autopsy
Pediatric (N=18,500 including up to 1000 MIS-C) Adult (N=17,680 including 2,450 Pregnancy) • Acute (N=9000), • Post-acute Prospective (N=3,580), Retrosp. (N=5,100)	70+M records, 3.7M+ with SARS-CoV-2 infection	• 700 cases

Til' we better understand the mechanisms of fatigue we suggest:

POWER NAP

15-20 minutes

Restore alertness

Easy way to get some relaxation and to reduce mental fatigue

Restore wakefulness, promote learning and boost memory

Reverse the hormonal impact of a night of poor sleep

Enhance both physical & cognitive performance

Reduce stress and immune perturbations after a short night

Have caffeine right before you nap to improve postnap alertness and cognitive functioning

