

Beyond the Symptom: The Biology of Fatigue September 27 – 28, 2021

Studying Hibernation Biology to Gain Insights into Fatigue

Kelly L. Drew, PhD

Center for Transformative Research in Metabolism, University of Alaska Fairbanks

Disclaimer and Disclosures

Disclaimer

This certifies that the views expressed in this presentation are those of the author and do not reflect the official policy of the NIH.

Disclosure

I have a financial interest in Be Cool Pharmaceutics.

Research in Metabolism

Seasonal Cycle of the Arctic Ground Squirrel

Thermoregulatory changes anticipate hibernation onset by 45 days – Free Ranging AGS

Seasonal decrease in metabolism leads to a decrease in Tb and a decrease in food intake

Sheriff et al., 2012, J Comp Physiol B

Laboratory housed animals – 22°C; 12:12 L:D Winter sleepiness accompanies lower metabolic rate and body temperature (in animals that are *not hibernating*)

Decreased sensitivity to caffeine Increased sensitivity to adenosine receptor agonists

Fig. 1.—Annual changes in percent of a 24-h period spent asleep for each of four golden-mantled ground squirrels maintained at a temperature of 22 C and 12L:12D photoperiod. Animals were euthermic for the duration of all recording periods.

Walker et al., 1980, Hibernation and Circannual Rhythms of Sleep, Physiological Zoology, Vol. 53(1), pp. 8-11

Golden mantel ground squirrel (Callospermophi lus lateralis)

Human circannual rhythms also revolve around resource availability

- A seasonal rhythm modulates thermogenesis and underlies expression of hibernation and seasonal sleepiness.
- Seasonal rhythm is associated with enhanced A₁ adenosine receptor signaling.

Current Biology

CellPress

Volume 25, Issue 21, 2 November 2015, Pages 2862-2868

Report

Natural Sleep and Its Seasonal Variations in Three Pre-industrial Societies

Gandhi Yetish ¹, Hillard Kaplan ¹, Michael Gurven ², Brian Wood ³, Herman Pontzer ⁴, Paul R. Manger ⁵, Charles Wilson ⁶, Ronald McGregor ⁷, Jerome M. Siegel ^{7, 8, 9} △ ☑

The Model

The Summer-Winter transition increases sensitivity to A₁ adenosine receptor signaling so that in winter sleep extends into torpor.

Adenosine is a retaliatory metabolite and inhibitory neuromodulator at the heart of energy homeostasis

sleep drive

Seasonal increase in sensitivity of A₁AR in arctic ground squirrels housed at 20°C and 12:12 L:D

Free running T_b rhythm at rest predicts onset of torpor and sensitivity to CHA

Maximal change in T_b after CHA (°C)

Olson et al., 2013

CNS regulation of "fatigue" in the winter season requires A₁ adenosine receptors

Off-season (summer): May- June

Early hibernation season: Sep-Oct

Mid hibernation season (winter): December

Study Design

Jinka et al., 2011

A₁AR stimulation is necessary and sufficient to induce hibernation in arctic ground squirrels

- Spontaneous hibernation reversed by A₁AR antagonist (CPT), but not A_{2A}AR antagonist (MSX-3)
- ✓ A₃AR agonist (2-CL-IB MECA) did not induce hibernation

<u>Seasonal modulation</u> of thermoregulatory circuits explain seasonal response to CHA

Seasonal modulation of neuronal pathways regulating thermogemogenesis and vasoconstriction Summer Fall Primes the brain for A1AR agonist-induced hibernation Nibernation Winter

Median Preoptic

Raphe Pallidus

Frare et al.,

J Neurochem. 2019 Nov;151(3):316-335.

Energy homeostasis may be communicated from the periphery to the brain through retaliatory signaling metabolites like adenosine

Tanycytes may permit transport of adenosine from blood to brain through seasonal expression of adenosine kinase

PHARMACOLOGY OF ADENOSINE RECEPTORS: THE STATE OF THE ART

Pier Andrea Borea, Stefania Gessi, Stefania Merighi, Fabrizio Vincenzi, and Katia Varani

Table 5. Biological effects of adenosine

Effects	Receptor Subtype
Central nervous system	
Inhibition of neurotransmitter release	A ₁
Neuroprotection	A_1/A_3
Anxiolytic activity	A ₁
Anticonvulsant activity	A ₁
Reduction of pain	A_1/A_3
Excitatory activity	A _{2A}
Stimulation of glutamate and acetylcholine release	A _{2A}
Reduction of locomotor activity	A _{2A}
Trophic effects	A_{2A}/A_{2B}
Cardiovascular system	
Negative inotropic effect	A_1
Negative chronotropic effect	A_1
Negative dromotropic effect	A ₁
Ischemic preconditioning	A_1/A_3
Vasodilation	A_{2A}/A_{2B}
Inhibition of platelet aggregation	A _{2A}
Immune system	
Inhibition of reactive oxygen species	A_{2A}/A_3
Neutrophils	A_1/A_3
Increase of chemotaxis	A ₁
Decrease of chemotaxis	A ₃
Lymphocytes	
Immunosuppression	$A_{2A}/A_3/A_{2B}$
Monocytes/macrophages	
Inhibition of proinflammatory cytokines release	$A_{2A}/A_3/A_{2B}$
Mast cells	
Stimulation of degranulation	A_3/A_{2B}
Respiratory system	
Bronchoconstriction	$A_1/A_3/A_{2B}$
Renal system Vasoconstriction	Δ.
Vasodilation	A ₁
	A _{2A}
Reduction of the glomerular filtration rate Inhibition of diuresis	A ₁ A ₁
	•
Inhibition of renin secretion Gastrointestinal system	A ₁
Inhibition of acid secretion	A ₁
Stimulation of intestinal chloride secretion	A _{2B} /A ₃
Cellular metabolism	M2B/ M3
Inhibition of lipolysis	A ₁
Inhibition of insulin secretion	A ₁
Stimulation of gluconeogenesis	A _{2A}
Production of glucose	A _{2B}
	1,58

Mechanisms regulating hibernation may underlie mechanisms relevant to fatigue

- In hibernation sleep transitions into torpor (extreme fatigue?)
- Regulated by increased gain in purinergic signaling
- Whole body metabolism communicates with brain
- Tanycytes are positioned to regulate body-brain communication.

Thank you!

- Tulasi Jinka
- Sarah Rice
- Zac Carlson Carla Frare

- Angelo D'Alessandro
- Julie Haines

Funding

• P20GM130443